Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermal conversion and epitaxial overgrowth of nanopores etched in InP and GaAs

Identifieur interne : 001351 ( Main/Repository ); précédent : 001350; suivant : 001352

Thermal conversion and epitaxial overgrowth of nanopores etched in InP and GaAs

Auteurs : RBID : Pascal:12-0354599

Descripteurs français

English descriptors

Abstract

Both crystallographically oriented and current line oriented pore networks in InP and GaAs are created by electrochemical dissolution. Heat treatment of InP pores at 650°C and of GaAs pores at 700-850°C converts them into microcavities maintaining almost the same crystallographic direction. As a transition between micro/nanopores and micro cavities the lamellar structures are obtained. Mass transport is responsible for the pore conversion. The effect of 'anion' vapour pressure is proved to be crucial for the microcavity formation since it influences the mass transport during the heat treatment. Electron microscopy and photoluminescence experiments reveal the absence of significant extended defects, both after the formation of pores and cavities. The capability of improved structural quality of homo- and hetero-epitaxially overgrown films on porous InP is demonstrated by liquid phase epitaxy growth of InP and InAs. Overgrowth of the porous GaAs substrates by ternary GaInAs layers with different lattice mismatch was realised by metal organic vapour phase epitaxy.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0354599

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thermal conversion and epitaxial overgrowth of nanopores etched in InP and GaAs</title>
<author>
<name sortKey="Nohavica, D" uniqKey="Nohavica D">D. Nohavica</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronics, Academy of Science of the Czech Republic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>182 51 Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grym, J" uniqKey="Grym J">J. Grym</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Photonics and Electronics, Academy of Science of the Czech Republic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>182 51 Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gladkov, P" uniqKey="Gladkov P">P. Gladkov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Photonics and Electronics, Academy of Science of the Czech Republic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>182 51 Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hulicius, E" uniqKey="Hulicius E">E. Hulicius</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute of Physics, Academy of Science of the Czech Republic</s1>
<s3>CZE</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Institute of Physics, Academy of Science of the Czech Republic</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pangrac, J" uniqKey="Pangrac J">J. Pangrac</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Institute of Physics, Academy of Science of the Czech Republic</s1>
<s3>CZE</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Institute of Physics, Academy of Science of the Czech Republic</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jarchovsky, Z" uniqKey="Jarchovsky Z">Z. Jarchovsky</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institute of Photonics and Electronics, Academy of Science of the Czech Republic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>182 51 Prague</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0354599</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0354599 INIST</idno>
<idno type="RBID">Pascal:12-0354599</idno>
<idno type="wicri:Area/Main/Corpus">001883</idno>
<idno type="wicri:Area/Main/Repository">001351</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1475-7435</idno>
<title level="j" type="abbreviated">Int. j. nanotechnol.</title>
<title level="j" type="main">International journal of nanotechnology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystal orientation</term>
<term>Crystallographic direction</term>
<term>Defect formation</term>
<term>Diffusion</term>
<term>Dissolution</term>
<term>Electrochemical etching</term>
<term>Electron microscopy</term>
<term>Epitaxial layers</term>
<term>Extended defects</term>
<term>Gallium arsenides</term>
<term>Growth mechanism</term>
<term>Heat transfer</term>
<term>Heat treatments</term>
<term>Heteroepitaxy</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>LPE</term>
<term>Lamellar structure</term>
<term>MOVPE method</term>
<term>Microcavities</term>
<term>Mismatch lattice</term>
<term>Nanopore</term>
<term>Nanoporosity</term>
<term>Nanostructures</term>
<term>Photoluminescence</term>
<term>Porous materials</term>
<term>Thermal conductivity</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Epitaxie phase liquide</term>
<term>Couche épitaxique</term>
<term>Nanopore</term>
<term>Nanoporosité</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Arséniure de gallium</term>
<term>Dissolution</term>
<term>Traitement thermique</term>
<term>Microcavité</term>
<term>Orientation cristalline</term>
<term>Direction cristallographique</term>
<term>Structure lamellaire</term>
<term>Diffusion(transport)</term>
<term>Matériau poreux</term>
<term>Transfert chaleur</term>
<term>Conductivité thermique</term>
<term>Microscopie électronique</term>
<term>Photoluminescence</term>
<term>Défaut étendu</term>
<term>Formation défaut</term>
<term>Couche mince</term>
<term>Mécanisme croissance</term>
<term>Arséniure d'indium</term>
<term>Accommodation réseau</term>
<term>Méthode MOVPE</term>
<term>Nanostructure</term>
<term>Gravure électrochimique</term>
<term>Hétéroépitaxie</term>
<term>InP</term>
<term>Substrat indium phosphure</term>
<term>Substrat InP</term>
<term>Substrat GaAs</term>
<term>GaInAs</term>
<term>6865</term>
<term>6630P</term>
<term>6580</term>
<term>7867</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Both crystallographically oriented and current line oriented pore networks in InP and GaAs are created by electrochemical dissolution. Heat treatment of InP pores at 650°C and of GaAs pores at 700-850°C converts them into microcavities maintaining almost the same crystallographic direction. As a transition between micro/nanopores and micro cavities the lamellar structures are obtained. Mass transport is responsible for the pore conversion. The effect of 'anion' vapour pressure is proved to be crucial for the microcavity formation since it influences the mass transport during the heat treatment. Electron microscopy and photoluminescence experiments reveal the absence of significant extended defects, both after the formation of pores and cavities. The capability of improved structural quality of homo- and hetero-epitaxially overgrown films on porous InP is demonstrated by liquid phase epitaxy growth of InP and InAs. Overgrowth of the porous GaAs substrates by ternary GaInAs layers with different lattice mismatch was realised by metal organic vapour phase epitaxy.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1475-7435</s0>
</fA01>
<fA03 i2="1">
<s0>Int. j. nanotechnol.</s0>
</fA03>
<fA05>
<s2>9</s2>
</fA05>
<fA06>
<s2>8-9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thermal conversion and epitaxial overgrowth of nanopores etched in InP and GaAs</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>ON NANOTECHNOLOGY IN THE CZECH REPUBLIC</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>NOHAVICA (D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GRYM (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GLADKOV (P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HULICIUS (E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PANGRAC (J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JARCHOVSKY (Z.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>PUMERA (Martin)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute of Photonics and Electronics, Academy of Science of the Czech Republic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Photonics and Electronics, Academy of Science of the Czech Republic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Photonics and Electronics, Academy of Science of the Czech Republic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute of Physics, Academy of Science of the Czech Republic</s1>
<s3>CZE</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institute of Photonics and Electronics, Academy of Science of the Czech Republic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University</s1>
<s2>Singapore 637371</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>732-745</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27530</s2>
<s5>354000506653800060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0354599</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of nanotechnology</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Both crystallographically oriented and current line oriented pore networks in InP and GaAs are created by electrochemical dissolution. Heat treatment of InP pores at 650°C and of GaAs pores at 700-850°C converts them into microcavities maintaining almost the same crystallographic direction. As a transition between micro/nanopores and micro cavities the lamellar structures are obtained. Mass transport is responsible for the pore conversion. The effect of 'anion' vapour pressure is proved to be crucial for the microcavity formation since it influences the mass transport during the heat treatment. Electron microscopy and photoluminescence experiments reveal the absence of significant extended defects, both after the formation of pores and cavities. The capability of improved structural quality of homo- and hetero-epitaxially overgrown films on porous InP is demonstrated by liquid phase epitaxy growth of InP and InAs. Overgrowth of the porous GaAs substrates by ternary GaInAs layers with different lattice mismatch was realised by metal organic vapour phase epitaxy.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60F30P</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60E80</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Epitaxie phase liquide</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>LPE</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche épitaxique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Epitaxial layers</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Nanopore</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nanopore</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Nanoporo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Nanoporosité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Nanoporosity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Nanoporosidad</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Dissolution</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Dissolution</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Microcavité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Microcavities</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Orientation cristalline</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Crystal orientation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Direction cristallographique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Crystallographic direction</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Dirección cristalográfica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Structure lamellaire</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Lamellar structure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estructura lamelar</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Matériau poreux</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Porous materials</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Transfert chaleur</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Heat transfer</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Conductivité thermique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Thermal conductivity</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Microscopie électronique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Electron microscopy</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Défaut étendu</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Extended defects</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Formation défaut</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Defect formation</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Formación defecto</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Accommodation réseau</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Mismatch lattice</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Acomodación red</s0>
<s5>38</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>39</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>40</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Gravure électrochimique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Electrochemical etching</s0>
<s5>41</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Grabado electroquímico</s0>
<s5>41</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Hétéroépitaxie</s0>
<s5>42</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Heteroepitaxy</s0>
<s5>42</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Heteroepitaxia</s0>
<s5>42</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Substrat indium phosphure</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Substrat InP</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Substrat GaAs</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>GaInAs</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>6630P</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="37" i2="3" l="FRE">
<s0>6580</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="38" i2="3" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>275</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001351 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001351 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0354599
   |texte=   Thermal conversion and epitaxial overgrowth of nanopores etched in InP and GaAs
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024